Open Domain Information Extraction via Automatic Semantic Labeling

نویسندگان

  • Alessandro Moschitti
  • Paul Morarescu
  • Sanda M. Harabagiu
چکیده

This paper presents a semantic labeling technique based on information encoded in FrameNet. Sentences labeled for frames relevant to any new Information Extraction domain enable the automatic acquisition of extraction rules for the new domain. The experimental results show that both the semantic labeling and the extraction rules enabled by the labels are generated automatically with a high precision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Automatic Semantic Role Labeling

The goal of semantic role labeling is to map sentences to domain-independent semantic representations, which abstract away from syntactic structure and are important for deep NLP tasks such as question answering, textual entailment, and complex information extraction. Semantic role labeling has recently received significant interest in the natural language processing community. In this tutorial...

متن کامل

A New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model

Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...

متن کامل

Domain-Independent Novel Event Discovery and Semi-Automatic Event Annotation

Information Extraction (IE) is becoming increasingly useful, but it is a costly task to discover and annotate novel events, event arguments, and event types. We exploit both monolingual texts and bilingual sentence-aligned parallel texts to cluster event triggers and discover novel event types. We then generate event argument annotations semiautomatically, framed as a sentence ranking and seman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003